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In this paper, we will describe the current state-of-the-art of Statistical 

Machine Translation (SMT), and reflect on how SMT handles meaning. 

Statistical Machine Translation is a corpus-based approach to MT: it de-

rives the required knowledge to generate new translations from corpora. 

General-purpose SMT systems do not use any formal semantic representa-

tion. Instead, they directly extract translationally equivalent words or word 

sequences – expressions with the same meaning – from bilingual parallel 

corpora. All statistical translation models are based on the idea of word 

alignment, i.e., the automatic linking of corresponding words in parallel 

texts. The first generation SMT systems were word-based. From a linguistic 

point of view, the major problem with word-based systems is that the mean-

ing of a word is often ambiguous, and is determined by its context. Current 

state-of-the-art SMT-systems try to capture the local contextual dependen-

cies by using phrases instead of words as units of translation. In order to 

solve more complex ambiguity problems (where a broader text scope or 

even domain information is needed), a Word Sense Disambiguation (WSD) 

module is integrated in the Machine Translation environment. 

 

 

1. Introduction: Statistical Machine Translation 

 

Statistical Machine Translation (SMT) is one of the best performing corpus-

based approaches to natural language processing (NLP). Unlike the work 

that has been carried out in the field of language philosophy, corpus-based 

approaches traditionally have not tried to define the meaning of a word in a 

philosophical or explicit way, but restricted themselves to the study of 

meaning in context. Other machine translation approaches, such as the 

Interlingua approach, have tried to formally represent the meaning of words 

(see section 2). 

The idea of linking the meaning of a word to its context has a long 

history that starts with the distributional theory of meaning, which links the 

meaning of a word to its distribution and further states that two words are 

distributionally similar if they appear in similar contexts. This theory of 

meaning goes back to Harris’ Distributional Hypothesis (Harris 1968), 

suggesting  a direct link between distributional similarity and semantic 

similarity: two words that tend to occur in similar contexts tend to have 

similar meanings.  
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This idea is also exploited by lexicographers today, who use corpus 

evidence for creating dictionaries. For each dictionary entry, a KWIC 

(keyword in context search) is performed, and all relevant meanings and 

patterns of use are distilled from the example sentences. 

As SMT only performs a shallow analysis of the context, it is con-

fronted with a number of inherent problems of the nature of language. First, 

there are semantic and structural differences between languages. Examples 

of these differences are non-compositional expressions (e.g. Dutch in het 

oog springend (prominent)), words that can only be translated by multiword 

paraphrases (e.g. the Portuguese word saudade), structural differences (e.g. 

the English verb in I like swimming is translated in German by means of an 

adverb: Ich schwimme gern), etc. The second category of problems is 

caused by ambiguity, which is still considered to be the most fundamental 

problem of language technology. For SMT, we refer to ambiguity whenever 

there is uncertainty about the meaning of a word or sentence in a text. The 

origin of the ambiguity can be morphological (e.g. German compound 

Staubecken can be translated as water reservoir (stau-becken) or as dust 

corners (staub-Ecken)), syntactic (e.g. John saw the boy with the telescope, 

where it is not clear whether it is John who used the telescope or the boy), 

semantic (homographs and polysemes (e.g. Turn the truck to the right ver-

sus the deposits turn into sludge, Bush became president following the 2000 

presidential election versus the raging bush and forest fires)) or referential 

(Mary hit her bag against the vase, it broke, where you need real world 

knowledge to know that it refers to the vase as a bag does not break). 

 In language technology, ambiguity is partially resolved by perform-

ing automatic analysis on all linguistic levels (tokenisation, part-of-speech 

tagging, parsing, semantic analysis, anaphora resolution, etc). The remain-

der of the paper shows how different generations of Machine Translation 

systems have tackled the major problems MT is confronted with. 
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2. Machine Translation 

 

Figure 1: Vauquois triangle 

 

The ultimate goal of Machine Translation, whichever approach is taken, is 

to translate a source language text into a target language text in a fully 

automatic way. The different approaches can be classified according to the 

level of linguistic analysis that is used, which is often illustrated by means 

of the Vauquois triangle (Vauquois 1968). 

In direct Machine Translation systems, the translation of each word 

or phrase is looked up in a dictionary and the source language word is sub-

stituted by the equivalent word or phrase in the target language. Dictionary 

lookups may be done on the word form or on the lemmatized form.
1
 So, in 

the direct approach only a minimum of linguistic analysis is used. In trans-

fer-based approaches, the source language text is syntactically analysed 

(parsed), and the source language parse structure is transformed into a tar-

get language parse structure. The target language sentence is generated 

from the target language parse structure. In interlingua approaches, the 

source language text is analysed into some abstract meaning representa-

tion,
2
 called an interlingua. The target language sentence is generated from 

this abstract meaning representation. 

It goes without saying that ‘perfect’ translation can only be achieved 

by using semantic knowledge, which involves a deep syntactic and seman-

tic analysis of the text. Machine Translation is still considered as one of the 

most difficult problems in the field of Natural Language Processing, and the 

problem of automatically producing a high quality translation of an arbi-

trary text is far too hard to automate completely (Jurafsky & Martin 2000: 

 800). Nevertheless, most state-of-the-art systems are based on a superficial 

analysis, and can produce reasonable quality.  

Source Text

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

Target Text

Interlingua

Analysis GenerationTransfer

DirectSource Text

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

Target Text

Interlingua

Analysis GenerationTransfer

Direct
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While the earlier approaches to Machine Translation (and Natural 

Language Processing in general) were rule-based, the current approaches 

are data-driven, which means that all the knowledge needed for translation 

is extracted from parallel texts. The statistical approaches to Machine 

Translation are also data-driven. In most cases, parallel corpora are aligned 

at sentence level, meaning that sentences of the source texts are connected 

with sentences of the target texts. 

 

 

3. Statistical Machine Translation 

 

Two inherent characteristics of good translations form the basis of the ar-

chitecture of SMT systems:
3
 

 

• Translations preserve the meaning of the source language 

(faithfulness or fidelity); 

• translations are as natural as an utterance of the target language 

(naturalness or fluency). 

 

The goal of Statistical Machine Translations is to produce an output that 

maximizes these two factors.  In order to achieve this goal, an SMT system 

must be able (1) to quantify faithfulness,  (2) to quantify fluency and (3) 

needs an algorithm that finds the sentence that maximizes the product of 

these two factors (Jurafsky & Martin 2000: 819). 

Fluency is measured by probabilistic monolingual language models, 

which are in most cases n-gram models. The probability of an n-gram (i.e. 

in case of a 3-gram, the probability that a sequence of three words occurs) 

is derived from large monolingual corpora of the target language. 

Since this paper deals with meaning, the first problem, “how to quan-

tify faithfulness or fidelity” is more of interest to us. The central question 

we will try to answer is:  How do existing SMT systems measure how 

close the meaning of a source sentence is to the meaning of a translated 

sentence? The basic factor often used in metrics of fidelity is the degree to 

which all words in the target sentence are plausible translations of the 

words in the source sentence. Thus, the probability of a sentence being a 

good translation can be approximated as the product of the probabilities that 

each target language word is an appropriate translation of some source lan-

guage word (Jurafsky & Martin 2000: 821). 

In order to calculate the probability of a sentence and its translation, 

the system therefore needs to know for every target language word, the 

probability of its mapping to every source language word.  

These translation probabilities are derived from parallel texts (aligned 

source-target sentence pairs). The problem of deriving the translation 

probabilities from parallel texts is closely related to the problem of word 

alignment, which is explained in the next section. 
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4. Word Alignment 

 

Statistical word alignment is an unsupervised method, which means that it 

starts from unannotated (raw) data from a large sentence-aligned corpus.  It 

is based on the assumption of co-occurrence: words that are translations of 

each other co-occur more often than random in aligned sentence pairs. The 

output of a statistical word alignment model is a large bilingual word list 

with probability estimations. 

The most widely used statistical word alignment models are the IBM 

translation models (Brown et al. 1993). The simplest IBM model – IBM 

Translation Model One – is a purely lexical model: it only takes into ac-

count word frequencies in source and target sentences. The higher num-

bered IBM Models build on IBM Model One and take into account word 

order (distortion) and model the probability that a source word aligns to n 

target words (fertility). The IBM models allow only 1:n word mappings. A 

detailed description and comparison of the IBM models can be found in 

Och and Ney (2003).  

It was already mentioned in section 2 that SMT does not make use of 

hard-coded rules, but uses probabilistic knowledge sources in the form of 

probability distributions. The statistical word alignment process is also 

guided by probabilities. Suppose one has a corpus that is manually aligned 

at the word level. In order to extract the alignment probabilities one could 

just count how many times a source word is translated by a certain target 

word. Unfortunately, large corpora in which word alignments are manually 

indicated do not exist and are time-consuming to create. Therefore, a meth-

odology was developed to estimate these probabilities without human inter-

vention.  

One technique to estimate the translation probabilities is the Expecta-

tion Maximization (EM) algorithm (Manning & Schütze 1999: 488). The 

EM algorithm is a learning method that iteratively carries out two steps: in 

the first step (Expectation step), probabilities are assigned to all word pairs 

by applying a word alignment model; in the second step (Maximization 

step), the model is adapted based on new counts collected for all word 

pairs. 

To start up the process, the initial word alignment model applies a 

uniform distribution: it assumes that all correspondences between source 

and target words in an aligned sentence pair are equally likely. In the sub-

sequent iterations, it calculates the relative frequencies, which it uses as a 

model in a subsequent iteration.  
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The EM process is illustrated in Figure 2. In the Expectation step of the first 

iteration, all source words of each sentence are aligned to all target words of 

that sentence. After a few iterations, the system knows (based on the fre-

quency counts) that the connections between the and de, and doctor and 

dokter are more likely. This is indicated in Figure 2 by means of a thicker 

line. In most systems, four or five iterations are used. 

Figure 2: illustration of the EM process 

 

To illustrate how SMT arrives at meaning we used the Perl implementation 

of IBM Model one that is part of the Microsoft Bilingual Sentence Aligner 

(Moore 2002), on a 10-million-word sentence-aligned English-Dutch sam-

ple of the Europarl corpus (Koehn 2005).  

 
Table 1: estimated probability distributions for all Dutch translations of doctor 

and for all Dutch translations of head based on Europarl 

 

p(arts|doctor) 0.481 p(hoofd|head) 0.269 

p(doktor|doctor) 0.082 p(kop|head) 0.068 

p(medische|doctor) 0.017 p(regeringsleider|head) 0.019 

p(ingrepen|doctor) 0.015 p(voorsprong|head) 0.014 

p(huisarts|doctor) 0.015 p(hoofdelijke|head) 0.014 

p(ingrijpt|doctor) 0.012 p(inwoner|head) 0.014 

 

From the resulting bilingual dictionary, we selected all translations of doc-

tor and all translations of head with a probability value higher than 0.01. 

The resulting word pairs and probabilities are given in Table 1. A first ob-

servation is that the two most probable translations in the Europarl corpus 

are arts (48%) and doktor (8%). A second observation is that other seman-

tically related words that often co-occur in the target sentence (e.g. 

medische, ingrepen, huisarts) also get a higher probability value even if 

they have no equivalent meaning. However, the difference between the 

probability values of these pairs and those of the two most probable transla-

tions is considerable: the lowest value of the latter is nearly five times 

higher than the highest value of the former, which can be considered as less 

reliable. 

Similar observations can be made for the translations of head. The 

two most probable translations are hoofd (27%) and kop (7%). The Dutch 

translation regeringsleider for head reveals a problem of the IBM models: 

they are asymmetric. They can only model 1:n correspondences as they take 

as starting point the source word and estimate conditional probabilities (i.e. 

… the doctor …

… de vriendelijke dokter …

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.
QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

… the friendly doctor …

… de dokter …

… the doctor …

… de vriendelijke dokter …

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.
QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

… the friendly doctor …

… de dokter …
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the probability that a target word is a translation of a source word, given the 

source word). Multiword units (the Dutch word regeringsleider corre-

sponds with Head of Government) are problematic for the word-based 

models, as every word (Head, of and Government) is treated as a separate 

entry. To overcome this problem, the IBM models are often used in two 

directions: from source to target and from target to source. 

We explained in section 3, that the problem of quantifying faithful-

ness or fidelity for a sentence and its translation is approximated as the 

product of the probabilities that each target language word is an appropriate 

translation of some source language word. This is in fact an oversimplifica-

tion of the problem, as a word-for-word translation is assumed. 

In most translations, however, translational correspondences are 

more complex, and only for some words can word-by-word correspon-

dences be found. The rest of the sentence is translated on the level of com-

binations of words. The following example shows a sentence pair where 

more complex translational correspondences (challenge – daag uit, in the 

secrecy of – achter de gesloten deuren van, Council Chamber – 

Raadskamer) are indicated manually. Such more complex correspondences 

(see also example 1, below) remain problematic for the word-based SMT 

systems. 

(1) En: I challenge any minister who may resist these proposals 

in the secrecy of the Council chamber to ... 

Nl: Ik daag iedere minister die deze voorstellen achter de 

gesloten deuren van de Raadskamer verwerpt uit om ... 

 

 Table 2: manually indicated translational correspondences 

 

I Ik 

challenge daag...uit 

any iedere 

minister minister 

who die 

may resist verwerpt 

these deze 

proposals voorstellen 

in the secrecy of achter de gesloten 

deuren van 

the de 

Council chamber Raadskamer 

to om 

... ... 

 

In spite of the fact that statistical word alignment systems are able to extract 

automatically translational equivalences at word level and estimate 
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probability distributions for the translation pairs, which can be used to 

indicate the “relative importance” of the different translations, they face a 

number of  limitations. 

 

• Most word alignment systems start from plain text corpora, which 

means that they align word forms (word tokens). A useful abstraction 

can be achieved by lemmatizing the corpus prior to word alignment. 

Lemmatization can be a workaround to solve the data scarcity 

problem if the parallel corpus is small. 

• A related problem is the treatment of semantically related words as 

unrelated tokens (e.g. act and action). This problem is more difficult 

to solve.  

• Generally speaking, words are defined as space-delimited tokens. 

However, complex words are formed differently in different 

languages: For example, English and Dutch use a different 

compounding strategy (e.g. regeringsleider – Head of Government, 

anti-terrorism policy – antiterrorismebeleid). The word alignment 

system has problems to cope with such differences. 

• During word alignment no contextual information is used.
4
 Often, 

the correct translation depends on the context. In the first-generation 

word-based statistical machine translation systems, context 

information was only available in the n-gram language models, 

which only code monolingual information of the target language. 

Therefore, the second-generation SMT systems work with larger 

units that are translationally equivalent, viz. phrases. 

 

 

5. Phrase-based statistical Machine Translation 

 

A first attempt to improve Word-based SMT-systems by adding contextual 

information to the translation models is the use of a phrase translation table. 

In a phrase translation table translations of word pairs or phrases are stored 

in such a way that the immediate local context can be used to determine the 

translational equivalence. On the basis of word alignments, current phrase-

based SMT systems automatically extract bilingual phrases. As we have 

seen in section 4, the IBM models are asymmetric. To overcome this 

problem, the IBM models are run in two directions: from source to target 

and from target to source. Different symmetrisation heuristics can be used 

to combine the word alignments of both translation directions (Och & Ney 

2003). 

Figure 3 shows the output of Moses, an open source phrase-based 

SMT system (Koehn et al. 2007), after symmetrisation of the alignment 

points. Please observe that the system is not error-free: the English words 

may and resist have not been aligned, and to has been erroneously aligned 

with the Dutch word om. 
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Figure 3: symmetrised word alignment points indicated by x’s 

 

On the basis of the symmetrised alignment points, the bilingual phrases are 

extracted automatically and stored in the so-called phrase translation table. 

Any phrase pair that is consistent with the symmetrised word alignment is 

collected, where consistent is defined as: the words in the phrase pair are 

aligned to each other and not to any words outside the phrase pair (Koehn et 

al. 2005). 

In the example used for  Figure 3, the following phrases have been 

extracted: (I challenge/ Ik daag), (challenge any/ daag iedere), (any minis-

ter/ iedere minister), (minister who/ minister die), (these proposals/ deze 

voorstellen), (proposals in/ voorstellen achter), (in the/ achter de), (the se-

crecy/ de gesloten deuren), (secrecy of/ gesloten deuren van), (of the/ van 

de), (the Council Chamber/ de raadskamer), (to/ uit om), (I challenge any/ 

Ik daag iedere), (challenge any minister/ daag iedere minister), etc. 

The phrase translation tables as defined above allow the phrase-

based SMT systems to capture certain translational phenomena as long as 

they are contiguous chunks. The limitation that only contiguous chunks are 

included in the phrase table is especially problematic for languages such as 

Dutch and German. Since they contain a high percentage of separable pre-

fix verbs and adopt a less strict word order (in comparison to English), the 

prefix is often separated over a long distance from the verb (e.g. daag ... uit 

in the example sentence above). Macken (2007) demonstrated that espe-
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cially for Dutch non-contiguous correspondences account for 2.5 to 5% of 

all alignments. As far as we know, only Simard et al. (2005) allow non-

contiguous phrases in an SMT system. 

Although the phrase-based SMT systems perform significantly better 

than the word-based systems, they still face a lot of problems. First, they 

cannot capture the movement of hierarchical structures during translation. 

Several attempts have been made to include syntactic knowledge into statis-

tical MT systems. However, as their main objective is to model word order 

problems, we will not pursue this issue in detail in this paper. Second, 

phrase-based MT systems only handle ambiguity in case it can be resolved 

by incorporating the immediate context. To solve the more complex ambi-

guity problems, where a broader text scope or even domain information is 

needed, a real disambiguation module must be integrated into the machine 

translation environment. This novel approach to MT is described in the next 

section. 

 

 

6. Word Sense Disambiguation in Statistical Machine Translation 

 

Until recently, semantic ambiguity has only been handled in an implicit 

way in SMT. In the IBM models, contextual information is very limited: the 

language model (which quantifies naturalness) uses n-grams, whereas the 

translation model makes use of a phrase translation table that only captures 

the immediate local context.  

In recent years, small improvements obtained by adding dedicated 

Word Sense Disambiguation (WSD) modules to the SMT system have been 

reported. Cabezas and Resnik (2005) have tried to cast the problem of lexi-

cal selection in SMT as a WSD problem in which the “senses” are target 

translations of the source word. Example 2 below shows how their ap-

proach improves the general translation quality by producing a correct 

translation for the ambiguous word “carta” in Spanish: 

 

(2) Source sentence:  

señor presidente, he votado a favor de esta carta en buena 

parte por la influencia que nuestro colega ingo friedrich y el 

profesor herzog han ejercido en su contenido. 

 

Baseline MT output:
5
 

i voted for this in a letter to the influence mr ingo friedrich 

and professor herzog have exercised their content. 

 

WSD MT output: 

mr president, voted in favour of  the charter in large part 

by the influence mr ingo friedrich and professor herzog have 

exercised their content. 
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Carpuat and Wu (2007), however, claim to have demonstrated that lexical 

semantics are useful for SMT. They have reported significant 

improvements on the standard metrics that are used for MT evaluation by 

adding a disambiguation module that is integrated in a phrase-based SMT 

system. 

The following two sections describe how a Word Sense Disambigua-

tion module works.  

 

 

7. Word Sense Disambiguation 

 

Starting from the hypothesis that the meaning of a word is determined by its 

context, a number of machine learning approaches have been developed in 

the NLP field for addressing both the synonymy and polysemy problem that 

often causes poor machine translation quality. Machine learning algorithms 

allow computers to ‘learn’ from training data; in this way inductive 

methods derive rules and patterns from large amounts of data.  

In a similar way, the shallow approaches to Word Sense Disam-

biguation (WSD or choosing the right sense of a polysemous word in a 

given context) do not try to understand the text in order to solve the prob-

lem either, but use contextual information from the training data.  

Agirre and Edmonds (2007) consider WSD as a classification task: a 

machine learning algorithm assigns the correct class (“sense” in this case) 

to a word, based on its context. As each polysemous word gets assigned its 

own classes or senses, it will require the construction of its own classifier. 

This is not the case for other classification tasks, such as Part-of-Speech 

tagging, where the class inventory is fixed (and consists of a predefined set 

of Part-of-Speech tags) and where only one classifier is trained an applied 

on random input text. 

For WSD, the classes that can be predicted correspond to the differ-

ent senses of the polysemous word. If we consider the following two sen-

tences with the ambiguous word “bank”, in example 3, the first one will get 

the class/sense label “SHORE”, wherease the second  will get the 

class/sense label “FINANCE”: 

(3) Today the banks of four rivers are polluted (Label: SHORE) 

The Australian bank issues blunt warnings on interest rates 

(Label: FINANCE) 

As mentioned before, the number of classes per ambiguous word 

corresponds to the predefined sense inventory (list of all senses) per word. 

In order to construct sense inventories for polysemous words, most WSD 

algorithms make use of digital lexical resources such as WordNet. These 

resources, however, have two fundamental problems: the sense distinctions 

are too detailed for real applications (problem of granularity) and they are 
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mainly available for English, and to a limited  extent only for a couple of 

other languages (e.g. EuroWordNet). Very fine sense distinctions do not 

only make the classification task much harder, but also cause an explosion 

of combinatorial effects (e.g. the example given by Slator and Wilks 

(1987): “there is a huge envelope of air around the surface of the earth” 

produced 284,592 sense combinations based on the Longman Dictionary of 

Contemporary English). 

Although WSD researchers have long been convinced that the level 

of sense-discrimination (distinction of different meanings of a word) 

needed by NLP corresponds to homographs, they now concede that for 

some applications one should make finer distinctions. Consequently, the 

sense inventory is strongly related to the application WSD is used for (e.g. 

mouse is always translated as souris in French, thus the difference in mean-

ing might be irrelevant for MT, but is certainly important for other applica-

tions such as Information Retrieval where you want to retrieve the docu-

ments for “mouse=animal” or “mouse=computer accessory”, but not the 

entire set of documents for both meanings of the word). Recent research in 

WSD has tried to overcome these difficulties by exploiting parallel corpora 

for the construction of the sense inventories, the underlying idea being that 

different senses are often lexicalized differently in other languages. Ideally, 

languages from different language families are taken into account in order 

to maximize the cross-linguistic lexicalization of the different senses. 

 

 

8. Word Sense Disambiguation approaches 

 

WSD classifiers can either be supervised (trained on a corpus of words 

tagged with their word senses, usually retrieved from a sense inventory 

such as WordNet) or unsupervised (senses of a given word are 

distinguished by grouping similar contexts of the ambiguous word). Semi-

supervised methods make use of annotated corpora in a bootstrapping 

process where training examples are used for training a classifier that tags 

‘sure’ (the classifier output having a very high confidence score) unseen 

occurrences, which are then added to the training corpus.  

The first WSD algorithms used to rely on knowledge-based re-

sources (dictionaries, thesauri and lexical knowledge bases). A well-known 

algorithm is the (Simplified) Lesk Algorithm, which identifies senses of 

words in context measuring the overlap between the sense definitions of the 

word and the current context. The following example (Lesk 1986) shows 

how the algorithm works. To determine the correct sense of cone and pine 

in the collocation pine cone, the algorithm first looks up the sense defini-

tions of both words. 

 

 

 



Translational equivalence in SMT or meaning as co-coccurrence  

 

205

 

(4) Pine  

(1) seven kinds of evergreen tree with needle-shaped leaves 

(2) pine 

(3) waste away through sorrow or illness 

(4) pine for something, pine to do something 

 

Cone   

(1) solid body which narrows to a point 

(2) something of this shape, whether solid or hollow 

(3) fruit of certain evergreen trees (fir, pine) 

The Lesk algorithm will select sense (1) for pine and sense (3) for cone as 

these definitions have most words in common. However, the knowledge-

based algorithms only achieve a moderate performance (between 50 and 70 

percent) which can both be explained by the fact that sense distinctions are 

very fine (which is a problem) and by (remediable) shortcomings of the 

resources: dictionary definitions are often too short and use other words to 

describe the same concept. To overcome some of these problems, more 

recent algorithms prefer large untagged or annotated corpora as training 

material. These corpora offer a vast amount of traning examples and a 

variety of contexts for ambiguous words. Moreover, the sense labels are 

usually coarse-grained and therefore better suited for training learning 

algorithms. 

Up to now supervised algorithms have proved to be the most suc-

cessful for tackling WSD. Because of the lack of manually sense-tagged 

data required for performing supervised learning, here again the exploita-

tion of parallel corpora is gaining ground. Ng et al. (2003) have done ex-

periments for Chinese-English to automatically acquire training data from 

parallel corpora. Given the word-aligned parallel corpus, the different trans-

lations of the ambiguous words serve as “sense tags” for the ambiguous 

words in the source language, and afterwards the different classes (transla-

tions) are mapped to existing WordNet senses. In this way the training ex-

amples are enriched with automatically acquired examples.  

The idea of using the different translations instead of explicit sense 

labels has been further developed for elaborating unsupervised approaches. 

The free availability of Europarl, a corpus of parallel text in 11 languages 

containing the proceedings of the European Parliament, has also speeded up 

the exploitation of parallel corpora. The unsupervised approaches do not 

only use the parallel corpora to provide training examples, but use the trans-

lations themselves as “sense classes” for each ambiguous word. Another 

advantage of using parallel text for constructing the sense inventory is that 

the corpus can be made domain or application specific. The unsupervised 

approach seems to work well for specific applications such as Machine 

Translation or Information Retrieval. Unfortunately, so far no sense inven-

tory for general-purpose WSD has been created. 



Lieve Macken & Els Lefever 206

State-of-the art WSD classifiers typically use a wide range of contex-

tual knowledge to decide on the right label (sense) of an ambiguous word. 

Context is defined in a broad sense going from collocations (surrounding 

words) and co-occurring words (bag of words extracted from a window of 

the X preceding and following sentences) to text genre or topic/domain of 

the text. Other useful information can be morpho-syntactical (part-of-

speech tags, lemma, syntactic dependency relations, etc.) or semantic (se-

mantic class, roles, etc). Research results (Agirre & Edmonds 2007: 233-

234) have shown that nouns typically ask for wide context and local collo-

cation information, whereas verbs benefit most from syntactic features. 

 In order to train the classifier, all relevant information (coded as 

“features”) is extracted for each instance from an ambiguous word and is 

stored in one feature vector per instance. To classify new occurrences of 

ambiguous words, the same feature vector is constructed and compared to 

all training instances in order to find the best corresponding training exam-

ple and accompanying label.  

Table 3 illustrates the extraction of the (simplified) feature vectors 

for our two bank examples in the training corpus: 

 

• Today/Adv the/Det banks/SHORE of/Prep four/Num rivers/Noun 

are/Aux polluted/Participle (Ex 1) 

• The/Det Australian/Adj bank/FINANCE issues/Verb blunt/Adj 

warnings/Noun on/Prep interest/Noun rates/Noun (Ex 2) 

 

The first four features that are listed contain Part-of-Speech information 

(PoS tags of the two preceding and two following words), the last three 

features contain co-occurrence information. For each ambiguous word, a set 

of words that often co-occur with the ambiguous target word, is 

automatically defined (based on co-occurrence frequency). These context 

features indicate whether this word, the one that often co-occurs with the 

ambiguous target word, is present in the sentence (“Yes”) or not (“No”). 

The last column in Table 3 contains the Sense Label that is assigned 

to the ambiguous word in this particular sentence. 
 

Table 3: example of two feature vectors for the word bank 

 

 PoS 

-2 

PoS 

-1 

PoS 

+1 

PoS 

+2 

river interest Rate Sense 

Label 

Ex

1 

Adv Det Prep Num Yes No No “shore” 

Ex 

2 

Det Adj Verb Adj No Yes Yes “finance” 

 

The way to best integrate WSD in SMT seems to be “phrase sense 

disambiguation”. This approach redefines the classical WSD task to move 

beyond the single word targets, and generalises to multi-word phrase targets 
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that match better the phrasal lexical selection requirements of the state-of-

the art phrase-based SMT systems. Sense candidates for the ambiguous 

phrases are then defined by the SMT translation lexicon itself.  

 

 

9. Conclusion 

 

Statistical Machine Translation (SMT) is a corpus-based approach to MT: it 

derives the required knowledge to generate new translations from corpora. 

General-purpose SMT systems do not use any formal semantic 

representation. Instead, they directly extract translationally equivalent 

words or word sequences – expressions with the same meaning – from 

bilingual parallel corpora. 

All statistical translation models are based on the idea of word 

alignment, i.e., the automatic linking of corresponding words in parallel 

texts. Melamed (1998) decomposed the problem of MT lexicon construc-

tion process into two parts: 

 

• What are the possible translations for each source word? 

• In what context are the various translations used? 

 

Provided that suitable sentence-aligned parallel corpora are available, word 

alignment methods can answer the first question. To answer the second 

question, it is necessary – but this is by no means  easy – to move away 

from the word level (word-to-word translation) and go to the phrase level, 

so that immediate local context can be used to determine translational 

equivalence. Another promising and complementary approach to select the 

appropriate translation is to incorporate WSD-techniques, which use 

contextual clues taken from the whole sentence (and beyond) to 

discriminate between different word senses. 
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_____________________________ 
1 During lemmatization, for each orthographic word, the base form (or canonical form) is generated. 
2 One of the earliest attempts to formalize an abstract meaning representation as a  string of features 

can be found in Katz and Fodor (1963). 
3 In Translation Studies, Toury also discerns this dichotomy in his initial norm and refers to it with 

the terms adequacy and acceptability: ‘Whereas adherence to source norms determines a 

translation’s adequacy as compared to the source text, subscription to norms originating in the 

target culture determines its acceptability” (Toury, 1995, pp. 56-57). 
4 The higher numbered IBM models try to model word order, however. 
5 As a baseline, they use the Pharaoh decoder (Koehn, 2004).  


